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I. INTRODUCTION

Throughout this paper, M will denote a compact Riemannian globally
symmetric manifold of rank one [14]. Let the group Iso(M) of all isometries
of M be equipped with its natural Lie group structure [17]. If G denotes the
neutral connected component of Iso(M) and K denotes the stabilizer of
some base point 1€ M, then K is a closed subgroup of the compact
connected Lie group G and M is diffeomorphic to the left coset space
G/K. The Riemannian symmetric pair (G, K) is either of the Euclidean type
or of the compact type. In the first case, M 1s diffecomorphic to the one-
dimensional torus group T. Since we are interested only in the case
dimp M > 1, we shall suppose that G is a semisimple compact connected
Lie group.

Let p be the normalized Haar measure of ¢ and « : G — M the canonical
surjection. Then » == k() is the normalized G-invariant Radon measure
on M. 1t is well known that (G, K) forms a Gelfand pair [10, 18]. Thus K
is a massive subgroup of G. Let M denote the unitary dual of M, i.c.. the
set of all equivalence classes of continuous irreducible unitary representations
of G that are of class | with respect to K [7, 8, 24]. For each A e M there
exists a complex Hilbert space ,(M) of finite dimension d, that is invariant
with respect to the action of G on M such that L% M; v) admits the Hilbert
sum decomposition

Led(M;v) = (1) A(M)

reM

corresponding to the Peter—-Weyl decomposition of the complex Hilbert
space Lc*G; ). The spaces (H#4(M)),.y consist of continuous complex-
valued functions on M and are minimal G-invariant vector subspaces of
Lc2(M; V).
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Let ¢ denote a grouping of M, i.e., a family of finite subsets of M that are
strictly increasing with respect to inclusion and cover the whole of M. For
any Je ¢ let (M) = @), 56(M). Moreover, let

Q;: (M) — H,(M) 1

be a continuous linear projector, i.e., a continuous idempotent linear mapping
of the complex Banach space ¥c(M) onto its vector subspace 54(M).

In the present paper we ask the following question. Given ¢, does the
family (Q,),.s define a convergent approximation process in %¢(M)? In
other words: Does the {(uniform) convergence

lim || Qof — /il = 0

holdforeach function f'e ¥c(M) ? A negative answer will be given in Theorem4
of Section 4. The proof is based on the classification of compact Riemannian
globally symmetric manifolds of rank one that is outlined for the reader’s
convenience in Section 2. It proceeds in several stages that are of some
interest for their own sake (Sections 3 and 4). Section 5 deals with the case
M = S; in view of the fact that S; assumes a distinguished réle among the
compact spheres (S,).>, - Finally, Section 6 is concerned with some addition-
al comments.

2. CoMPACT RIEMANNIAN GLOBALLY SYMMETRIC MANIFOLDS OF RANK ONE

Keeping to the notations of the preceding section, let (M) = €' (M)
be the vector space of all complex Radon measures on M and <-, -> the
canonical bilinear form associated with the duality (¥c(M), #c(M)). For
each class A € M let H, > 0 be the Schwartz kernel of (M) € Hilb(€ (M)
with respect to the Banach space ¥c(M) [22]. If €, € M (M) denotes the
Dirac measure located at the point x € M then the zonal K-spherical function
40, € (M) of positive type with pole y e M is given by

g Max ~He,, e eC.

For each J e # the Fourler projector P, : €c(M) — (M) takes the form

Pyif~(Max ~Y f Y@@, )]
2es VM

To determine explicitly the functions (w,),x it should be observed that M

is a compact two-point homogeneous space. According to the classification

of these spaces [25] the following list of compact Riemannian globally

symmetric manifolds of rank one and real dimension # > 1 is complete [15]:
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(i) M = S, , the spheres of dimension n = 2:
(1) M = P,(R), the real projective spaces of dimension n .- 2;

(i) M - PC), the complex projective spaces of real dimension
n =4 ne2N;

(iv) M == P,(H), the quaternionic projective spaces of real dimension
n =8, nedN;

(vi M . P (Cay), the Cayley elliptic plane of real dimension 16.

The Riemannian symmetric pairs (G, K) such that M is diffeomorphic to
G/K are as follows:

(i) G --8SOm--1 K ==80(n),n_-2;

(i) G =8SO0mn +1) K = 0m),n > 2;

(iiy G = SUEn -~ 1) K = S(U(in) U, n =4, ne2N:
(iv) G ==S8pin 4+ 1)y K = Sp(4n) > Sp(l), n = 8, n€4N;
(v) G == Fycay K = S009).

All the geodesics in M are simply closed and have the same length 2/ where
¢ > 0 denotes the diameter of M. Let 2 ¢ o(M) be the closed vector subspace
of €¢(M) formed by the zonal functions e € (M). Clearly, Z¢€ (M) may
be identified with the complex Banach space ¢ o(K'.G/K) and fe% (M)
belongs to @6 (M) if and only if f depends only on the distance 8, & {0. /]
of its argument x € M from the basc point 1. More precisely, we have
Je FOF (M) if and only if there exists a function f* € € ¢([—1. 1]) such that
the identity

F(x) == f3(cos 2/,0.,)

holds for all points x € M with a suitable number ¢, = 0 depending upon the
metric of M. The mapping f ~- f% defines an isomorphism of Z¢% (M) onto
Cel[—1, -+1].

The zonal K-spherical functions (w,),car of positive type on M with pole 1
are eigenfunctions of the Laplace-Beltrami operator 4 of M. If we choose
a geodesic polar coordinate system with pole at the base point 1 and colatitude
6, the radial part of 4 takes the Jacobi operator form

- 1 o

ya| e d )
© T sinv 4,0 - sint 24,0 df ol

in? cenld /.6 - -
(sm /o0 - sin? 24,0 7
The multiplicities p = 0 and ¢ > 0 are determined by the structure of the Lie
algebras of G and K [4]. We quote the following list from Helgason [15]:
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i) M=8S, p=0 gq=n—1 £, =m[2{,n>=2;

(i) M=P,R) p=20 g=n—1 ¢, ==uld,n=>2;

(i) M=P,C) p=n—2 g=1 ly = w20, n = 4, ne2N;
iv M=P,(H) p=n—4 g=3 ly = m[2¢0,n >= 8, n€4N;
(v) M =P(Cay) p=28 qg="17 ty = w2

If M is identified with a subset of N by means of the natural bijection and
P denotes the Jacobi polynomial of degree m with indices

a=3p+qg—1, B=1iqg—-1
and standardization P{P(1) = ("+*) then we have the list:

i M=S, (@ 0~ @, PP (cos 2440), me N;
(i) M=P,(R) ,,%:8~a,P?(cos2f), me2N;
(iiiy M =P (C) (wn':0 ~a,P>? (cos2(0), meN;
(iv) M =P (H) wp":0~a,P? (cos2/,8), meN;
(v) M =DP(Cay) wp?: 0~ a,P? (cos2,8), meN.

Here (a,,)..> denotes a sequence of standardization constants.

3. PRELIMINARY RESULTS

Let €c?(R) be the vector space of all bounded continuous complex-valued
functions on the real line R equipped with the Cebysev norm | - ||, . Denote
by E the closed vector subspace of the complex Banach space € ¢*(R) formed
by all functions € ¥(R) that are even and have the period 2=. Moreover,
for an arbitrary finite subset J, of N such that 0 € J, let E; be the vector
subspace of E spanned by the even trigonometric monomials

{0 ~cosnb{nely

and
- it vy int
Dy :Tseé E e

neZ
Inied,

the Dirichlet kernel associated with J, .

THEOREM 1. Let L, : E — E be a continuous endomorphism of the complex
Banach space E that is idempotent and satisfies L,(E) = E, . Then the
estimate

lidg — Ly |l = 3(1 + [ Dy lly)
holds.
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Proof. Identify E in the natural way with a closed vector subspace of the
complex Banach space €¢(T) and let F, : Eef~ [+ D, € E be the Fourier
projector associated with J,. By an adaptation of the reasoning used in
Cheney [5, Chap. 6], in the special case J, - {1, 2...., N} we obtain via a
symmetrization formula the estimate

2 ;1 ldE — LJO e ‘ldb — [:JU} = l ;i DJ“Q‘I N

as contended.

THEOREM 2. Suppose that O <k < 6711 - ¢=*) and let N == Card(J,)
be sufficiently large depending upon k. If the mapping L, : E—> E satisfies
the hypotheses of Theorem 1 then the inequality

" < 1{1 a7 Jofgi\t v
= Lo, =3 (1 k() )

obtains.

Proof. Combine Theorem | with the Cohen-Davenport-Pichorides
theorem ([6, 9]; also see [I, 16]).

4. DIVERGENCE THEOREMS

By virtue of the results obtained in the preceding section we are now in a
position to prove the following divergence result.

THEOREM 3. Let M denote a compact Riemannian globally symmetric
manifold of rank one. Suppose that § is a grouping of its unitary dual M C N
such that 0 € J for all sets J € J and S = {x; | j e N} is a preassigned sequence
of distinct points belonging to M. There exists a fat subset F of the complex
Banach space Z0€ (M) such that

lim P;f(x) — --o0
Jef

for all functions fe F and all points x € S.

Proof. We shall consider the case (i) in the classification of the compact
Riemannian globally symmetric manifolds of rank one. Thus M == §,, ,
n = 2. We have M = N. Fix the north pole 1 = (0, ..., 0, 1) of S,, as the
base point. For each m € N, 2#£,(S,,) is the complex vector space of all surface
spherical harmonics of degree m on S§,,, i.c., the vector space of the restric-
tions to S,, of all harmonic homogeneous polynomials of degree m inn - 1
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real variables and complex coefficients. The complex dimension of 5,(S,)
is given by

:(n+m—2)!(n+2m~l)

n (n— D!Im!

(m e N).

Furthermore, w,, is the zonal spherical harmonic of degree m with pole 1
([3] or [19, Part 11, Chap. III)). Since £ = 7, 24, = 1 we have in the present
case

noz | moz)
2 2 J(cos b) (m e N).

(n—z n
Wy « 9 - aum

To adopt the customary notation and normalization, let P denote the
ultraspherical (or Gegenbauer) polynomial of degree m and index A > —}
with standardization P{(1) = ("*2-1).

Put

p, = rt2m—1

n—1

Then the zonal spherical harmonics (,,)n>e give rise to the functions

bz 0~ mem(n_;l) (cos ) (meN). 3

Let the sequence (c,,)m>o form the spectrum of the complex commutative
Banach algebra Z'OL:MNM; v) = L{(SOM)\SO(n + 1)/SO(n)). The charac-
ters ¢, take the form

e S () [ ) nle) duw)

and for each Je ¢ the restriction L, = P,| Z0%(S,) of the Fourier
projector (2) admits the representation

L;: Z06(Sy) Sf Z cm(f) Wy € ff@%(gn)

meJ

From an expansion of the generating function we obtain the trigonometric
representation

71
Pm( i )(cos ) =2 Y oo, jco8(m—2)0

0I<im]

of the ultraspherical polynomials occurring in (3). The coefficients are

.,on—1
ocj:(j+ 2 _1) (jeN)
J
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(see [23, Chap. 1V]). Let Jy == Jpes {m — 2j$ 0 =2 j < §[m]}. The mapping
(R28 ~ ficos ) ~ (R0 - (L;f)¥cos §))
satisfies the hypotheses of Theorem . Thus, by Theorem 2, we obtain
sup } L1 = oo, 4)
Je s

For each J € N define the lower semicontinuous seminorm p; : Z0€(S,) —
R, U {+ oo} according to

piofosup s Lyfiy) .
Je g

Moreover, let
2 Afe Zet(S,)ymfp(f) - o)
jeli

and suppose that Z is 4 nonmeager subset of the complex Banach space
06 (S,). An application of the uniform boundedness principle entails
the existence of a number j, & N such that p; is finite valued and continuous
on ZU€(S,). Thus we have

Z Wy - B

meS I
But this is contradicted by (4) showing that Z i1s a meagre set and the com-
plement F of Z with respect to Z%(S,) is fat. The theorem is thereby
established for the case (i). The proof for the cases (ii)-(v) proceeds similarly.

-

THEOREM 4. Let the manifold M and the grouping § be as in Theorem 3.
If (Q)) ey denotes a family of continuous linear projectors as in (1) then there
exists a function f € € (M) such that the condition

sup Qufl. ~ %
Je &

holds. Thus the approximation process (Q)).g Iis divergent in ¢ c(M).

Proof. By the preceding theorem we have
sup i Pyl = -~
Je g

The Charshiladze-Lozinski theorem for G-homogeneous Banach spaces
[11, 12] implies via the Marcinkiewicz-Berman symmetrization formula
that the inequality
PP 0y e g)
holds.
Thus an application of the Banach-Steinhaus theorem yields the result.
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Remark 1. Theorem 4 remains valid when (Q;),. s denotes a family of
continuous linear projectors of the Lebesgue space Lc(M; v) into the vector
subspaces H#5 (M), Je F£.

Remark 2. 1t should be emphasized that Theorems 3 and 4 are valid for
arbitrary groupings ¢ of M. For the case of special groupings see [11, 12].
In this connection also see [13] and the paper [21] for a survey.

5. THE CASE M = S,

Let H be a compact Lie group of positive dimension. If H acts freely on a
compact sphere S,, n == 1, then H is isomorphic to a subgroup of the
special unitary group SU(2) (cf. [2, Chap. III]). Specifically, there are precisely
three possibilities: H = T, H = N(T) the normalizer of T, and H = SU(2).
If SU(2) is considered as the compact group

q = qol + Z GujreHi gl =1

1<k
of unit quaternions, then N(T) is generated by T and j, and has two connected
components T and j,T. Thus the sphere S,, (n > 1) carries a Lie group struc-
ture which is compatible with its topology if and only if n = 3. In the case
M = S, the zonal spherical harmonics, the zonal SO(3)-spherical functions
of positive type on S, and the characters of SU(2) coincide up to some
standardization constants with the Ceby$ev polynomials of the second kind.
Since 0% (S;) may be identified with the center Z€:(SU(2)) of the complex
convolution algebra € ¢(SU(2)), Theorem 3 implies the following special result.

THEOREM 5. Let ¥ be a grouping of N such that O € J for all sets J< ¥
and S a countable set of points in SU(2). There exists a fat subset F of the
Banach space Z€c(SU(2)) of all central continuous complex-valued functions
on SU(2) such that

lim P;f(x) = +
Je f

for all functions f < F and all points x € S.

Recently Price [20] has proved this result by an extension of the Cohen—
Davenport theorem to the compact unitary groups U(2) and SU(2).

6. CONCLUDING REMARK

The proof of the preceding results are based on the symmetrization tech-
nique (Theorems 1 and 4) and the Cohen—-Davenport—Pichorides theorem.



244 WALTER SCHEMPP

In

a forthcoming paper some additional applications of this method will

be given. In particular, the problem of noncomplemented vector subspaces
of Banach spaces will be investigated.
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