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I. INTRODUCTION

Throughout this paper, M will denote a compact Riemannian globally
symmetric manifold of rank one [14]. Let the group Iso(M) of all isometries
of M be equipped with its natural Lie group structure [17]. If G denotes the
neutral connected component of Iso( M) and K denotes the stabilizer of
some base point ~ E M, then K is a closed subgroup of the compact
connected Lie group G and M is diffeomorphic to the left coset space
GjK. The Riemannian symmetric pair (G, K) is either of the Euclidean type
or of the compact type. In the first case,M is diffeomorphic to the one
dimensional torus group T. Since we are interested only in the case
dim~ M I, we shall suppose that G is a semisimple compact connected
Lie group.

Let /1, be the normalized Haar measure of G and K ; G -~ M the canonical
surjection. Then v K([1-) is the normalized G-invariant Radon measure
on M. It is well known that (G, K) forms a Gelfand pair [10, 18]. Thus K
is a massive subgroup of G. Let ](1 denote the unitary dual of M, i.e.. the
set of all equivalence classes of continuous irreducible unitary representations
of G that are of class I with respect to K [7, 8, 24]. For each ,\ E leI there
exists a complex Hilbert space Yf'A(M) of finite dimension dAthat is invariant
with respect to the action of G on M such that Lr;2(M; v) admits the Hilbert
sum decomposition

L C2(M; v) = ffi £\(M)
"EM

corresponding to the Peter--Weyl decomposition of the complex Hilbert
space L,,?(G; [1-). The spaces (~(M)AEM consist of continuous complex
valued functions on M and are minimal G-invariant vector subspaces of
L,,?(M; v).
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Letcf denote a grouping of M, i.e., a family of finite subsets ofM that are
strictly increasing with respect to inclusion and cover the whole of M. For
any J E J let .n}(M) = EBAEJ ~(M). Moreover, let

(1)

be a continuous linear projector, i.e., a continuous idempotent linear mapping
of the complex Banach space ~cCM) onto its vector subspace ~(M).

In the present paper we ask the following question. Given cf, does the
family (QJ)JEf define a convergent approximation process in ~cCM)? In
other words: Does the (uniform) convergence

hold for eachfunction/ E YffdM)? A negative answer will be given inTheorem4
of Section 4. The proof is based on the classification of compact Riemannian
globally symmetric manifolds of rank one that is outlined for the reader's
convenience in Section 2. It proceeds in several stages that are of some
interest for their own sake (Sections 3 and 4). Section 5 deals with the case
M = §3 in view of the fact that §3 assumes a distinguished role among the
compact spheres (§,,)n>2 . Finally, Section 6 is concerned with some addition
al comments.

2. COMPACT RIEMANNIAN GLOBALLY SYMMETRIC MANIFOLDS OF RANK ONE

Keeping to the notations of the preceding section, let .Lc(M) = Yffc'(M)
be the vector space of all complex Radon measures on M and (-, -> the
canonical bilinear form associated with the duality (~dM), .AdM». For
each class ,\ EO M let H A ~ 0 be the Schwartz kernel of~(M) E Hilb(~c(M»
with respect to the Banach space ~cCM) [22]. If Ex E .Lr;;(M) denotes the
Dirac measure located at the point x EO M then the zonal K-spherical function
yUJ,\ E ~(M) of positive type with pole y E M is given by

For each J EO cf the Fourier projector PJ : YffcCM) -+ ~(M) takes the form

PJ :/ """ (M3 x ",.... I Jyw'\(X)!(Y)dV(y».

AEJ M
(2)

To determine explicitly the functions (~UJAhEM it should be observed that M
is a compact two-point homogeneous space. According to the classification
of these spaces [25] the following list of compact Riemannian globally
symmetric manifolds of rank one and real dimension n > 1 is complete [15]:
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(i) M §" , the spheres of dimension /1 2:

Oi) M IP',,(IR), the real projective spaces of dimension /1"

(iii) M IP',,(C), the complex projective spaces of real dimension
n ~ 4, n E 2N;

(iv) M 1P',,(IHl), the quaternionic projective spaces of real dimension
n ~ 8, n E 4N;

(v) M IP' (Cay), the Cayley elliptic plane of real dimension 16.

The Riemannian symmetric pairs (G, K) such that M is diffeomorphic to
GjK are as follows:

(i) G SO(n -- I) K SO(n), n 2:

(ii) G SO(II + I) K O(n), n ,.

(iii) G SU(~11 I) K S(Uqn) U( J )), /1 4, 11 E 2f\~ :

(iv) G Sp(:!:n + I) K Sp(:ln) X SjJ(I), /1 8, n E 4N;

(v) G F4(_;'2) K 80(9).

All the geodesics in M are simply closed and have the same length 2f where
t> 0 denotes the diameter of /vl. Let :!.t(rrr; dA/) be the closed vector subspace
of rr;'dM) formed by the zonal functions f E ((,d M). Clearly, :!I(!/6d iH) may
be identified with the complex Banach space rr; ,z{K.,G!K) and} F ((, ,,(IV!)

belongs to .:'!'~)(6dM) if and only iff depends only on the distance OJ' F [0. f]
of its argument x EO M from the base point ~. More precisely, we have
! EO .:'!'(!)'(;rcCM) if and only if there exists a function f' E r(;d[-l, I]) such that
the identity

lex) }'(cos 2fOO))

holds for all points x EO M with a suitable number (u 0 depending upon the
metric of M. The mapping! ~"f~ defines an isomorphism of .:'!'(!/f;dM) onto
'6d[-l, +1]).

The zonal K-spherical functions (~wA)AEM of positive type on IIJ with pole ~

are eigenfunctions of the Laplace-Beltrami operator Ll of ivf. If we choose
a geodesic polar coordinate system with pole at the base point ~ and colatitude
&, the radial part of L1 takes the Jacobi operator form

The multiplicities p ?' 0 and q 0 are determined by the structure of the Lie
algebras of G and K [4]. We quote the following list from Helgason [15]:
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(i) M = §n p = 0

(ii) M = Pn(~) p = 0

(iii) M = Pnee) p = n - 2

(iv) M = Pn(lHI) p = n - 4

(v) M = P(Cay) p = 8

q=n-l
q=n-l
q=l
q=3
q=7

to = 7Tj2t, n ~ 2;

to = 7Tj4t, n ~ 2;

to = 7Tj2t, n ~ 4, n E 2N;

to = 7Tj2t, n ~ 8, n E 4N;

to = 7Tj2t.

If Sf is identified with a subset of N by means of the natural bijection and
p~,/3) denotes the Jacobi polynomial of degree m with indices

ex = Hp + q - 1), f3 = Hq - I)

and standardization P~,/3)(I) = (m,;") then we have the list:

(i)

(ii)

(iii)

(iv)

(v)

M= §n

M = Pn(~)

M = Pic)

M = Pn(lHI)

M = P(Cay)

IWm ~ : 0 ~- amp~,/3) (cos 2toO), m EO N;

IWm ~ : 0 ~- amp~,/3) (cos 2toO), mE 2N;
IWm ~ : 0 ~- amp~,/3) (cos 2toO), mEN;

IWm ~ : 0 - amp~,/3) (cos 2toO), m EO N;

IWm~ : 0 - amp~,/3) (cos 2toO), m EO N.

Here (am)m;;>o denotes a sequence of standardization constants.

3. PRELIMINARY RESULTS

Let Cf)<cb(~) be the vector space of all bounded continuous complex-valued
functions on the real line ~ equipped with the Cebysev norm II . II", . Denote
by E the closed vector subspace of the complex Banach space Cf}<cb(~) formed
by all functions f E Cf}<cb(~) that are even and have the period 27T. Moreover,
for an arbitrary finite subset Jo of N such that 0 E Jo let EJ • be the vector
subspace of E spanned by the even trigonometric monomials

{O - cos nO tn E Jo}

and

D J• : lr 3 eit
M> L eint

nEb:
InIEJ.

the Dirichlet kernel associated with Jo •

THEOREM I. Let L J • : E -- E be a continuous endomorphism ofthe complex
Banach space E that is idempotent and satisfies L J (E) = EJ • Then the• •
estimate

holds.
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Proof. Identify E in the natural way with a closed vector subspace of the
complex Banach space C{;'c(T) and let Flo: E Ef ~->f*D lo E E be the Fourier
projector associated with In. By an adaptation of the reasoning used in
Cheney [5, Chap. 6], in the special case J o {I, 2, ... , N} we obtain via a
symmetrization formula the estimate

as contended.

THEOREM 2. Suppose that °< k < 6- 1
/
2(1 e 2) and let N Care/(Jo)

be sufficiently large depending upon k. Ij' the mapping L lo : E --> E satisfies
the hypotheses of Theorem I then the inequality

obtains.

Proof. Combine Theorem I with the Cohen-Davenport-Pichorides
theorem ([6,9]; also see [I, 16]).

4. DIVERGENCE THEOREMS

By virtue of the results obtained in the preceding section we are now in a
position to prove the following divergence result.

THEOREM 3. Let M denote a compact Riemannian globally symmetric
manifold of rank one. Suppose that)" is a grouping oj'its unitary dual AI c: N
such that °E lfor all sets 1 E)" and S {Xj I j E N} is a preassigned sequence
of distinct points belonging to M. There exists a fat subset F of the complex
Banach space :!z{()'?idM) such that

lim PJf(x) w
JE5

for all functions fE F and all points XES.

Proof. We shall consider the case (i) in the classification of the compact
Riemannian globally symmetric manifolds of rank one. Thus M =.= §" '

n ?: 2. We have 111 ~~ N. Fix the north pole ~ (0, ... , 0, I) of §n as the
base point. For each mEN, yp'1I(§n) is the complex vector space of all surface
spherical harmonics of degree m on §n , i.e., the vector space of the restric
tions to §n of all harmonic homogeneous polynomials of degree m in n -I· I
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real variables and complex coefficients. The complex dimension of .n"m(§n)
is given by

d = (n + m - 2)! (n + 2m - 1)
m (n - I)! m!

(m EN).

Furthermore, W m is the zonal spherical harmonic of degree m with pole ~

([3] or [19, Part II, Chap. III]). Since t = 7T, 2to = 1 we have in the present
case

(
n-2 n-2)

W • 0 "-'> a P 2-' 2~ (cos 0)
~rn· mm (m EN).

To adopt the customary notation and normalization, let P;;') denote the
ultraspherical (or Gegenbauer) polynomial of degree m and index ,\ > -~

with standardization P;;'l(l) = (m+;;-l).
Put

b = n + 2m - 1
m n - 1

Then the zonal spherical harmonics (~wm)m>o give rise to the functions

(m eN). (3)

Let the sequence (cm)m>o form the spectrum of the complex commutative
Banach algebra fZ(!)Lcl(M; v) == Lcl(SO(n)\SO(n + l)(SO(n)). The charac
ters Cm take the form

and for each J e,J' the restriction L J = PJ I fZ(!)'(fd§n) of the Fourier
projector (2) admits the representation

L J : :!l'(!)'(fC(§n) 3f'~ I CmU) . UWrn e fZ(D~(§n)'
mEJ

From an expansion of the generating function we obtain the trigonometric
representation

p"r;l) (cos 0) = 2 I CijCim_j cos(m - 2j) 0
0<;;;';;;1 [rn]

of the ultraspherical polynomials occurring in (3). The coefficients are

(j+~-l)Cij = 2

.i
(jE N)
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(see [23, Chap. IV]). Let Jo c= UmEJ {Ill - 2j to,; joS; t[m]}. The mapping

(IR '3 (J,•• fq(cos 8)) ~.• (IR '3 (J '" (LJf)q(cos 8))

satisfies the hypotheses of Theorem 1. Thus, by Theorem 2, we obtain

sup L J 1

Jcy
(4)

For each J EN define the lower semicontinuous seminorm Pi: ;Z(1J'Cd§,,)-+
IR+ U {-I- w} according to

p,:f ... sup LJf(oYJ·
.ley

Moreover, let

7. {f 1~(6d§n)} infpkfli-w:
jt::ft

and suppose that Z is a non meager subset of the complex Banach space
;Z(1J'Cq:;(§,,). An application of the uniform boundedness principle entails
the existence of a number Jo E N such that Pi is finite valued and continuous
on ;Z(1J'(?~(§n)' Thus we have "

I IW",' X.
IIle.!

But this is contradicted by (4) showing that Z is a meagre set and the com
plement F of Z with respect to 2t (('6d§,,) is fat. The theorem is thereby
established for the case (i). The proof for the cases (ii)-(v) proceeds similarly.

THEOREM 4. Let the manifold M and the grouping f be as in Theorem 3.
If (QJ)JEf denotes a family of continuous linear projectors as in (I) then there
exists a function! E rcd M) such that the condition

holds. Thus the approximation process (QJ)Jef is divergent in {(' elM).

Proof By the preceding theorem we have

sup PJ = -;--X.
ley

The Charshiladze-Lozinski theorem for C-homogeneous Banach spaces
[I I. 12] implies via the Marcinkiewicz-Berman symmetrization formula
that the inequality

P, Ql (JE j)

holds.
Thus an application of the Banach-Steinhaus theorem yields the result.
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Remark 1. Theorem 4 remains valid when (QJ)Je.F denotes a family of
continuous linear projectors of the Lebesgue space L,[/(M; v) into the vector
subspaces .n'j(M), J E /.

Remark 2. It should be emphasized that Theorems 3 and 4 are valid for
arbitrary groupings / of M. For the case of special groupings see [11, 12].
In this connection also see [13] and the paper [21] for a survey.

5. THE CASE M = §3

Let H be a compact Lie group of positive dimension. If H acts freely on a
compact sphere §n, n ;? 1, then H is isomorphic to a subgroup of the
special unitary group SU(2) (cf. [2, Chap. III]). Specifically, there are precisely
three possibilities: H = T, H = N(T) the normalizer of T, and H = SU(2).
If SU(2) is considered as the compact group

\q = qol + L qkjkElHllj ql = 11
( 1<lc<3 ~ ~

of unit quaternions, then N(T) is generated by T andj2 and has two connected
components T andj2T. Thus the sphere §n (n > 1) carries a Lie group struc
ture which is compatible with its topology if and only if n = 3. In the case
M = §3 the zonal spherical harmonics, the zonal SO(3)-spherical functions
of positive type on §3' and the characters of SU(2) coincide up to some
standardization constants with the Cebysev polynomials of the second kind.
Since !!EffCc(§3) may be identified with the center !!Err!cCSU(2» of the complex
convolution algebra rr!cCSU(2», Theorem 3 implies the following special result.

THEOREM 5. Let / be a grouping of N such that 0 E J for all sets J E /

and S a countable set of points in SU(2). There exists a fat subset F of the
Banach space !!Err!cCSU(2» of all central continuous complex-valued functions
on SU(2) such that

lim Pd(x) = +00
Je.F

for all functions f E F and all points XES.

Recently Price [20] has proved this result by an extension of the Cohen
Davenport theorem to the compact unitary groups U(2) and SU(2).

6. CONCLUDING REMARK

The proof of the preceding results are based on the symmetrization tech
nique (Theorems 1 and 4) and the Cohen-Davenport-Pichorides theorem.



244 WALTER SCHEMPP

In a forthcoming paper some additional applications of this method will
be given. In particular, the problem of noncomplemented vector subspaces
of Banach spaces will be investigated.
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